154 research outputs found

    Search and identification of Scalar and Vector Leptoquarks at HERA with polarization

    Get PDF
    We analyze the effects of Scalar and Vector Leptoquarks on various observables in electron (positron) - proton deep inelastic scattering. In view of the future program of the HERA collider, with a high luminosity and also with polarization, we present the constraints that can be reached using this facility for several Leptoquark scenarios. We address the question of the identification of the nature of a discovered Leptoquark. We emphasize the relevance of having polarized lepton and proton beams in order to disentangle completely the various Leptoquark models. This study is also relevant in the context of the TESLAĂ—\timesHERA project.Comment: Version to appear in Eur.Phys.J.C. 3 typos have been correcte

    Emitter Location Finding using Particle Swarm Optimization

    Get PDF
    Using several spatially separated receivers, nowadays positioning techniques, which are implemented to determine the location of the transmitter, are often required for several important disciplines such as military, security, medical, and commercial applications. In this study, localization is carried out by particle swarm optimization using time difference of arrival. In order to increase the positioning accuracy, time difference of arrival averaging based two new methods are proposed. Results are compared with classical algorithms and Cramer-Rao lower bound which is the theoretical limit of the estimation error

    CMF-DFE Based Adaptive Blind Equalization Using Particle Swarm Optimization

    Get PDF
    The channel matched filter (CMF) is the optimum receiver providing the maximum signal to noise ratio (SNR) for the frequency selective channels. The output intersymbol interference (ISI) profile of the CMF convolved by the channel can be blindly obtained by using the autocorrelation of the received signal. Therefore, the inverse of the autocorrelation function can be used to equalize the channel passed through its own CMF. The only missing part to complete the proposed blind operation is the CMF coefficients. Therefore, in this work, the best training algorithm investigation is subjected for blind estimation of the CMF coefficients. The proposed method allows using more effective training algorithms for blind equalizations. However, the expected high performance training is obtained when the swarm intelligence is used. Unlike the stochastic gradient algorithms, the particle swarm optimization (PSO) is known to have fast convergence because its performance is independent of the characteristics of the systems used. The obtained mean square error (MSE) and bit error rate (BER) performances are promising for high performance real-time systems as an alternative to non-blind equalization techniques

    A morphological study of retinal changes in unilateral amblyopia using optical coherence tomography image segmentation.

    Get PDF
    OBJECTIVE: The purpose of this study was to evaluate the possible structural changes of the macula in patients with unilateral amblyopia using optical coherence tomography (OCT) image segmentation. PATIENTS AND METHODS: 38 consecutive patients (16 male; mean age 32.4+/-17.6 years; range 6-67 years) with unilateral amblyopia were involved in this study. OCT examinations were performed with a time-domain OCT device, and a custom-built OCT image analysis software (OCTRIMA) was used for OCT image segmentation. The axial length (AL) was measured by a LenStar LS 900 device. Macular layer thickness, AL and manifest spherical equivalent refraction (MRSE) of the amblyopic eye were compared to that of the fellow eye. We studied if the type of amblyopia (strabismus without anisometropia, anisometropia without strabismus, strabismus with anisometropia) had any influence on macular layer thickness values. RESULTS: There was significant difference between the amblyopic and fellow eyes in MRSE and AL in all subgroups. Comparing the amblyopic and fellow eyes, we found a statistically significant difference only in the thickness of the outer nuclear layer in the central region using linear mixed model analysis keeping AL and age under control (p = 0.032). There was no significant difference in interocular difference in the thickness of any macular layers between the subgroups with one-way between-groups ANCOVA while statistically controlling for interocular difference in AL and age. CONCLUSIONS: According to our results there are subtle changes in amblyopic eyes affecting the outer nuclear layer of the fovea suggesting the possible involvement of the photoreceptors. However, further studies are warranted to support this hypothesis

    Ultrafine grained plates of Al-Mg-Si alloy obtained by Incremental Equal Channel Angular Pressing : microstructure and mechanical properties

    Get PDF
    In this study, an Al-Mg-Si alloy was processed using via Incremental Equal Channel Angular Pressing (I-ECAP) in order to obtain homogenous, ultrafine grained plates with low anisotropy of the mechanical properties. This was the first attempt to process an Al-Mg-Si alloy using this technique. Samples in the form of 3 mm-thick square plates were subjected to I-ECAP with the 90˚ rotation around the axis normal to the surface of the plate between passes. Samples were investigated first in their initial state, then after a single pass of I-ECAP and finally after four such passes. Analyses of the microstructure and mechanical properties demonstrated that the I-ECAP method can be successfully applied in Al-Mg-Si alloys. The average grain size decreased from 15 - 19 µm in the initial state to below 1 µm after four I-ECAP passes. The fraction of high angle grain boundaries in the sample subjected to four I-ECAP passes lay within 53-57 % depending on the examined plane. The mechanism of grain refinement in Al-Mg-Si alloy was found to be distinctly different from that in pure aluminium with the grain rotation being more prominent than the grain subdivision, which was attributed to lower stacking fault energy and the reduced mobility of dislocations in the alloy. The ultimate tensile strength increased more than twice, whereas the yield strength - more than threefold. Additionally, the plates processed by I-ECAP exhibited low anisotropy of mechanical properties (in plane and across the thickness) in comparison to other SPD processing methods, which makes them attractive for further processing and applications
    • …
    corecore